Difference between revisions of "Shapes of distribution"
(→Normal (bell-shaped) distribution) |
|||
Line 14: | Line 14: | ||
Examples of data that follow a normal distribution could include blood pressure and scores on a test. | Examples of data that follow a normal distribution could include blood pressure and scores on a test. | ||
− | ''contributed by | + | ''contributed by Scott Trungadi'' |
== Skewness == | == Skewness == | ||
Line 26: | Line 26: | ||
Examining the data skewness allows you to see the variability of a data set. Skewness is when a data set does not follow the normal distribution. A normal distribution has a skewness of zero, and will have perfect symmetry. Data that is positively skewed will be skewed to the right and will be a positive number; data that is negatively skewed is skewed to the left of the data mean, and is a negative number. See an example of skewness, below. | Examining the data skewness allows you to see the variability of a data set. Skewness is when a data set does not follow the normal distribution. A normal distribution has a skewness of zero, and will have perfect symmetry. Data that is positively skewed will be skewed to the right and will be a positive number; data that is negatively skewed is skewed to the left of the data mean, and is a negative number. See an example of skewness, below. | ||
− | + | ''contributed by Cassandra Cosentino'' | |
[[File:skewness.png]] | [[File:skewness.png]] |
Revision as of 13:41, 17 October 2019
Distribution of data can take a wide variety of shapes, and ultimately depends on how data points are distributed along the measurement scale. A general "feel" for the data can be achieved by examining the uniformity (or lack thereof) of a distribution. In general, the larger the sample size, the more symmetrical the distribution.
Uniform distribution
Normal (bell-shaped) distribution
When the collected data tends to hover around a central value, with no bias to the left or the right, the data creates a Normal distribution. This Normal distribution is also referred to as the "Bell Curve" because it resembles a bell like shape.
When stating that data is normally distributed we are identifying that 50% of the values are less than the mean and that 50% of the values are greater than the mean. In a normal distribution the mean, median, and mode are equal to one another.
Examples of data that follow a normal distribution could include blood pressure and scores on a test.
contributed by Scott Trungadi
Skewness
Skewed right Skewed left
Acceptable skewness values: -1.000 < skewness < 1.000
Examining the data skewness allows you to see the variability of a data set. Skewness is when a data set does not follow the normal distribution. A normal distribution has a skewness of zero, and will have perfect symmetry. Data that is positively skewed will be skewed to the right and will be a positive number; data that is negatively skewed is skewed to the left of the data mean, and is a negative number. See an example of skewness, below.
contributed by Cassandra Cosentino
Kurtosis
Leptokurtic Platykurtic
Acceptable kurtosis values : -1.000 < kurtosis < 1.000